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EMITTANCE GROWTH FROM BEND/STRAIGHT TRANSITIONS 
FOR BEAMS APPROACHING THERMAL EQUILIBRIUM’ 

John J. Barnard and Bojan Losic 
Lawrence Livermore Xa.tional Laboratory, L-645, Livermore, CA 94550 

fIbs2mci! 
In certain applications such as heavy ion fusion, 

intense beams with large space charge tune depressions 
will be tranofenred from linear txansport sections into 
bent, txansport, s&ions. In some. designs, such as re- 
circutat.ing induct,ion acccterat,ors. t.ransport. through 
bends wilt occur over thousands of betatxon periods 
and in some driver dtasigns t,he final t.ransportS through 
a bend wilt occur over t,ens of betatxon periods. Owl 
such distances, non-linear space charge forces are es- 
petted t,o produce particle phase space distxibutions 
whic.ti arc close to thermal equilibrium. especially with 
respect t,o tower order moments. Here we catculat~e 
the properties of thermal equilibrium beams in bends 
assuming uniform focusing, as a function of t.wo di- 
mensionless paramet,ers We also outline the calcuta- 
tion of the change in emit.tance for a beam tallat is 
init.iatty in t,hcrmat equitibi-ium in a starnight, tSranspolt 
section. and t.tiat, finally reaches thermal equilibrium in 
a bent 5vst.em. using an energy conscr\-at,ion coiist,rnint. ’ . . 
t,o connect, the two st,ates. 

I. INTR.ODUCTION 
The conditions for equilibria of beams in a bent, 

system were determined in ref. [l]: under the assump- 
tion of uniform focusing and bending. witah dispersion 
included t.hrough linear order in the eql!at,ions of mo- 
t,ion. The equilibria. were det,ermined by rkquiring that. 
the derivat,ives of t,he second order moments wit.h re- 
spect, Qo patA length vanish. A fiirt.hcr assumpt.ion of 
t,his cnlciilat.ion was that. space= charg(x was tiistribiitctl 
unii’ormly iii an ettipt~icnl cross 5cTct.ion: ntt.lioligh as 
point.c;il out, in r&3. [‘L.:3]l tiist,ribiitions t.hnt, an’ fiinc- 
tjons only of .c’)/(x’)) + f~‘/($) are also &act, sotut,ions 
t,o the moment.i:quations of ref. [l]. where IL’ is the co- 
orctinnt.r in the. bend plane, !/ is t.he out,-of-plane coor- 
dina?te. and ( ) indicatees average over the distOributnion. 

Recently, in refs. [43] equilibrium distjribut,ions 
have Beck catciitnt.ed that, are fully sctf-consist.ctnt. so- 
liitjioiis t.0 tJic coupled \;tassov and Poisson eqiiat.ions. 
tIist~ribiit.ion fiinct.ions which arc functjions only of the 
single part.icte txansverse hamiltonian hl are sotiit*ions 
of the Vtasov equation: since 121 is a constant of the 
motion. In refs. [4,5], the properties of a generalized 
KV distribution, (i.e. a dett,a-function of hl) were in- 
vestigated in detail. Although, the KV beam in bends 
is interesting because of its analytic tract,abitity, beams 
which have equilibrated (e.g.due to space charge non- 
tinearit,ies), are likely to be bet,ter characterized 
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by thermal equilibrium distributions. Although longi- 
tudinal/transverse coupling can be strong [6], it is of 
general interest, to examine beams with distinct tem- 
parat,ures in the two directions. 

The purpose of this paper, is to examine thermal 
equilibrium beams in bends with tongitxdinal t8emper- 
atiires which are not, necessarily equal to the transverse 
t,emperat,ures (and hence the final temperat,ure cquili- 
brat.ion has not, necessarily been reached.) 

II. THEOR.ETICAL MODEL 
Eqi~itibrium distribut,ion functions f which sat,- 

isfy t,tie \~tassov/Poisson equations, for a system witA 
const.ant. focusing and bending ra.dius have been found 
previously having the fottowing form (refs. [4,5]): 

f = f(hl) exp[-(h/h~)‘] (1) 

where ‘L/t1 = 11: +$ +lL.:~o(;“s+?~~)+~!/o-~3:n‘//). Here 
.f s dl\;/dzdydp,dp,d6, is the number of part,ictes per 
element, of phase space, wit,h the in-bend plane (hori- 
zont,at) c0ordina.t.e .x. and vertical coordinate ;r/, dimcn- 
siontess m0mcnt.a J)~,~ normalized t,o t.he design mo- 
ment,iim in in t.hc tongit~i~tlinat ctirc33ion PO E yo?n.f+,. 
The quantity (I = (I:- - /‘,j)/P,j, is t,he fractional de- 
viation of a part,icte wit.h tongit,udinat moment~um I’,, 
from the tongit,udinat design moment.um. and nb is the 
part,icte rest, mass. ‘l’he qiiant,it,y I+0 is the zero current5 
spat,iat bct,at,ron frequency in the postulated uniform 
focusing channel: and p is t,he radius of curvatCnre in 
t,he uniform bending field. The qnant,it,y i is the ctec- 
trost.at.ic pot.cntint. and y f (,/:(:f???:t~;;‘. 

f(.c: g. prz py. h) = .f(, exp-hl/‘l;) c?xp( -h’/f$) 

Here. ‘/i E X.,,?;/~,~UI.IJ~ where I* is t.he comoving 
beam t,ransversc t,emperat.nre. /cl, is Hott.zmann’s con- 
stantC. The den&y 7).(x, 1)) is given by: 

Here ‘7 E 6~z”/2k$,p2T 1, and represents the effects of 
dispersion in a bend on off-momentum particles, and 
Ac$ E C#J(JZ:, .y) - +(O: 0). We find solutions to the non 
linear poisson’s equat,ion a’~$ = -qn.(z: y. 1$(2: Y))/Eo 
for which the beam pipe (radius I’,,) is sufficientJy far 
from the beam edge such that image forces can be 
ignored. 



files in this problem recover azimuthal symmetry. In 
that case, the density profiles can be characterized by a 
single parameter (see e.g. [8]) which we define here as 
NII EE n.(O, O)/nco,d. Here n(O; 0) is the central density 
and ?&,ld is given by: r&,/d z 2y3mvicok.G,/q”. The 
quantSity ?&,/d is the density of a beam with focusing 
constant keel, but at zero Tp and zero t). 

When disfiersion is added, the second dimension- 
less parameter 17 appears and all solutions may be 
characterized by the two dimensionless parameters LYE 
and II. We define S E k:j0.x/7, J/Z, y E kjo.1//7’y, 
cf, S !/Q/‘/‘~. and la E +(S: Y) - @(O: 0). We may 

Figure 1. Scaled density cr(X, Y) E n.(s, Y)/ncr,,,, 
vs. X and Y for the parameters r~[~ = 0.074. and 

then cast, Poisson’s equation intao the dimensionless f] = 0.05. , -’ 

Here: Q  f (1 - 71)5’/2 + Y’/2 + A@. ‘The bound- 
a.ry condition is <p = 0 at S’ + Y’ = Rz, where R, zz 
ki,c,r,,/7’:” IS the dimensionless pipe radius. Note that 
we have neglected the curvatiire terms in Poisson’s 
equation: which is appropriate when I*~, << p. Note 
also t,hat R,, adds a t.liird dimensionless parameter to 
the prol)Icmi. hilt. results presented Iicrc will he in a 
reginic where R,, is large onoiigl1 so that the beani pa- 
rameters arc nearly ilidep~lident~ of R,,. k\:e solve this 
equation numcrica.lly! using sta.ndard SOR techniques, 

Once a solution is ohta.ined: it is useful to calcn- 
late dimensionless moments of the density distribution: 
I,((l”, 7)) z JJdSdYesp -9; 
Ix.?(ct(,, 1)) E JJdSnY s2 cxp -Q; . 
I,~L’(~,~: ?I) E JJ fLYflY Y2 exp -*; 
and I,l,(~xo, 11: 22,) z s s dSdY @  esp -9. Hcrc,the 
intctgrat.ion occurs over the interior of the ha.m pipe. 
.V’ + 1.’ < /I$. and t.li(; c?splicit. ~l~?pondoiic~ 011 CY,) 

and tj is tlisplaycxl. l.‘roni 1.h~~ cluanf.il.ic5. avctrnq?s 

can Ix ol~t,aincd: (,Y’) 5z lx2/fI! (1.‘) 5 ly2/fl: and 
((I)) f 1+/l,. 

Csing the& integrals and averages: which depend 
only oil (11, 7): (and in t,lie case of IQ,: h?,,): we may 
calculate physical paranic~tcrs of t,lie beam. For ex- 
ample. the current I = ‘lll,,l?,,,/ric~“‘~~ I, /k:&: the per- 
\‘(?ance 11. E (lf/‘L”f,,-$ II,P~~ = tro’/‘l 11 /T: s-c?mitta.ncc: 
c .I: = 4((.l:“)(p~) - (.rpi)‘)l/‘l = 4’/i(fx2/1j)1/“y and 
space charge pa.ramcter S = 4K(.r')/c~ = K/3Tl = 
1~~,1~/47r. The rms tunct depression (T,/(T~~ = ( l/(SL’) + 
11) ‘/‘: and cry/nr, = l/(,.“)‘/‘. 

IV. RESULTS 
Figure 1 displays a surface plot of the normalized 

beam density with a relatively large dispersion, and 
moderate tune depression. The beam has an apparent 
elliptical shape with a flattop similar to the thermal 
equilibriuni beams in straight t#ransport sections (cf. 
b4). 
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Figllrct 2. log( I, ) vs. lo&:( I -0,,) (11pp1,r) nnd IoiL; 

vs. log( I - 00) (lowor) f0r fiw tlitfktnt~ va.111~5 of 11 
(starting from the left-most, curve and proceeding to 
the right, 77 = 0.00: 0.01. 0.02, 0.03. and 0.04). 

‘I’lic curvc3 asymptote to 0 ,, = 1 - II/;! for large 
space charge depressions (derivable from the envelope 
equations below with zero emittancc). and II tends to 
‘L;r/fi. while (S’l) ttrnds t.0 l/( I - 71) in the limit 
of zero space charge. 

IV. EQUILIBRIUM EQUATIONS 

In ref. [i]: moment equations including dispersion 
were derived: and in ref. [Y]: the effects of images on a 
uniform density elliptical beam in a circular pipe were 
derived. The envelope equations with these two effects 
included (in addition to the usual external focusing, 
space charge and emittance t,erms are): 



Here CL s 2m and 0 3 2 m. Setting d’n./ds’ = 
d’h/ds’ = 0, and transforming to t,he dimensionless 
variables, we find the equilibrium moments sat,isfy: 
o=-(l-q)JFj.+- 

It. has lwwi found that in all casc3 +3aminctl. that 
given II. and solving for (.P) and (IV’). these cqui- 
librium equations accurately predict t.hc moments dc- 
rived from the SOR code, and the final t,erm accurately 
gives an indication of the importance of image charge 
effects on the solution. 

V. EMITTANCE GR.OWTH FR.OM 
BEND/STR.AIGHT TR.ANSITIONS 

As discussed in [I]: if a beam abruptly ent.ers a 
hid from a straight transport section. off momen- 
tum particles will tend to oscillate iii .r about centers 
which are dispkcd from t,he design orbit of th ma- 
chine. ‘I‘his causes an envelope niismatch~ and if the 
non-linc>ar space charge forces are aiifficicnt,ly strong to 
allow phase mising and energy ecl”i-l’artit,ion htwecn 
the x and y directions, then a new equilibrium will re- 
sult. In ref. [I], the moment equations yield au exact 
energy invariant, when kijo is indcp~~indeiit~ of s. iin- 
dcr the assumption that density is conk& 011 nested 
ellipses (n(.r~?j) = ~(.c~/(x?) + g/(g))). More gen- 
(1rally: a dimensionless average transverse energy may 
IW writ.f.eii: 

HI = f ((I - L’II)(S’) + (,“, + (,(P) + ‘:I 

Hccaiisc~ of the choice of normalization. it. is the qiiau- 
tity H17’~ whiTA is conserved. KOQP that, the fact-or 
of l/2 multiplying (CD) is necessary t,o correctly calcii- 
late the self-assembly energy from space charp. .I;-, 
c.alculate the the change in beam parameters from a 
‘;t.raigIit/I~(1)i(.l transition. we first, calculate tlic current. 
1 and the transverse energy Hl’ii of the heam in the 
skaigllt. section. Because we tabulate Hl( Q,,. 11. R,,,)) 
for fixed R,, we must, account, for the change in R,, 
as ‘& changes even though rp remains fixed. f311t 

HL((~oJ. of: Ryj) = ff~((10j: ~j, Kpi) + (Ic/2?;j)X 

(In R,,f - In R,ij, where subscripts i:.f indicate initial: 
fina.l. For kpo and rp held constant. we find 
?ij[Hl(aoi, rl = 0, R,ij + (Ii’/4T~i) In li/T~i] = 
?ij[Hl(aoj, ?jj, R,i) + (K/4Tl,) In I</T’lj]. For a fi- 
uite value of 17, we iterate ‘I’, and CQ. until the current 
and this relation for HI is satisfied. This allows cal- 
culation of all final beam parameters and using (b’) = 
(I + 1&\-‘))6;;/2: we may a posteriori. det.ermiiic tlic 

initial wliic of fi,,. ‘IYic clia,ng(~ in cniittancc ca.lc.ula.tcd 
using this a.lgorit,lim a.grees within iiumc:rical nccurac) 
to the ca.lculation done using the moment equakions ill 
ref. [t] and compared with simulations in ref. [‘il. 

VII. CONCLUSIONS 
We have solved the self-consist,ent. \.‘lasov Poisson 

system for beams in bends with thermal distributions! 
and with temperatures not necessarily equal in the lon- 
gitudinal and transverse directions. \\:\:e have charac- 
terized these bea.ms by two dimensionless parameters 
CY[) and v and have graphed t8wo of the qunnt,ities which 
characterize the solutions. I\‘(? tinti that. sllch beams 
have profiles which are constant on iicwhi cl lipses, t,o 
&hiii niinicAcal c’rrors wlien the ham pipe is auf- 
ficiciitlv Iargc. .d ‘his validatc3 moiwiit. and eiivhp~~ 
equations in refs. [l] and [3] for this class of hams. 
Emit,tancc growth from hcnd/strniglit. trniisit,ionsZ iis- 
ing energy and current, cons(:rvatioii coiist~raiiits was 
found to ba the same as that, calculatctl in ref. [I] 
again t-0 within numerical uncertaintics. 
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